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ABOUT POROSITY PARAMETERS WITH THE
APPLICATION OF GENERAL SIMILARITY METHOD
TO THE CASE OF A DISSOCIATED GAS FLOW IN THE
BOUNDARY LAYER

Branko R. Obrovi¢ and Slobodan R. Savié

Faculty of Mechanical Engineering, Sestre Janji¢ 6, 34000 Kragujevac, Yugoslavia

(Received March 6, 2002)

Abstract. In this paper we have obtained the momentum equation for the ideally dissoci-
ated gas (air) flow in the boundary layer in the case of a porous contour of the body within
fluid. We have also defined the set of porosity parameters Ay that is necessary for the appli-
cation of generalized similarity method in order to solve different problems of compressible
fluid flow.

1. STARTING EQUATIONS

As it is known [2], [4], generalized similarity method is based on the use of the mo-
mentum equation and on the application of infinite parameters sets that are accepted
for new independent variables. Depending on the studied flow problem (incompress-
ible fluid, MHD boundary layer, dissociated gas, ...), these parameters have different
forms and they are related with different recurrent simple differential equations [2].

In this paper we have derived this momentum equation with the ideally dissociated
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gas (air) flow in the boundary layer in the case when the contour of the body within
fluid is porous. At the same time, a porosity parameter has been introduced and a
set of porosity parameters of the ideally dissociated gas has been defined. A complete
system of equations of the laminar planar and steady boundary layer of the ideally

dissociated gas (air) [3] is:

0 0
%(PU) + a*y(ﬂ”) =0,

o due D (o
p 83: p 8y_pe edl' ay May 9

da  da 6<pD8a
dy

e * pV((Ty - dy

C u@£+V8£ = —u udue—i—g )\a—T + %
P\ "oz oy ) Petle g dy \ Oy s dy

a7
oy Oy’

>+WA,

—(hA — hM)WA + pD(cpA — CpM)

k
p=pT(1+a)s— = pT(1+a)Ru;
QmA

These equations represent respectively: the continuity equation, the dynamic
equation, the equation of diffusion of the atomic component of the ideally disso-
ciated gas, the energy equation and the state equation. The notation usual in the
boundary layer theory has been used for the physical values in the system of equations
(1): u(x,y) — longitudinal projection of the velocity in the boundary layer, v(z,y) —
transversal projection of the velocity, p — density, p — pressure, p — dynamic viscosity
coefficient, & — mass concentration of the ideally dissociated gas atomic component,
D — coefficient of the diffusion, W, — mass formation rate due to dissociation of gas
molecules, ¢, — specific heat of the gas (as a mixture), £ — Boltzmann constant, A —
coefficient of thermal conductivity, T — absolute temperature, m — atomic and molec-
ular mass of the ideally dissociated gas, R — gas constant and h — enthalpy. The
subscripts represent: e — conditions at the outer edge of the boundary layer and A, M

— atomic and molecular component of the ideally dissociated gas, respectively.
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If, with v,,, we denote the given velocity of the dissociated gas flow trough the
solid porous wall of the body within fluid (v, > 0 at injection, v, < 0 at ejection)

and transversal to it, then the corresponding boundary conditions are:

u=0, v=u,(x), T=T, a=a, for y=0,

(2)

u — ue(x), T—T.(x), a— alr) for y— oc.

Here and further on, the subscript w stands for the physical values at the wall of

the body within fluid.

2. MOMENTUM EQUATION OF THE CONSIDERED PROBLEM

In order to obtain the momentum equation of the dissociated gas in the case of a
porous contour of the body within fluid (1, (z) # 0), we start only from the continuity
equation and the dynamic equation of the boundary layer of the system (1) of the
considered problem.

If the continuity equation is multiplied with u.(z), where u.(z) is the known
velocity of the ideally dissociated gas at the outer edge of the boundary layer, then

this equation comes down to:

0

9 () + 2 (o) = pue
gz Pe) + 5 (prue) = pu

dr -

Because of the continuity equation, the dynamic equation of the system (1) can

be transformed into:

2(u2)+g(uy)_ U%Jrg Ou
oz ¥ 8yp = Pty Oy “ay '

Subtracting these equations we get:

ﬁ(uu—tﬁ)—i—g(yu—w/)—%(u— u)—2 —
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Analogous to the way we derive the momentum equation of incompressible fluid,
the previous equation can be integrated term by term with respect to the variable y,
starting from the inner to the outer edge of the boundary layer, i.e., transversally to
the layer. Taking the boundary conditions into consideration (2) and presuming the

possibility of changing the order of differentiation and integration, we obtain:

d due [

00 ou
- —u)dy| — — — d i .
I [ /0 pu(te — u) dy| — puluwlic 7)o (pu — peue) dy + <# ay>y:0 (3)

This equation represents Karman’s integral relation for the considered case of the
ideally dissociated gas flow.

In order for this momentum equation of the considered problem to be of the same
form as the momentum equation of the corresponding problem of incompressible fluid
flow, it is necessary to introduce new variables. So, analogous to other compressible
fluid flow problems [3], instead of the physical coordinates x and y, we introduce a new
longitudinal s(z) and a new transversal variable z(z,y) in the form of the following

relations:

1 x vop
s(z) = — w b AT, z(x, :/—d. 4
(z) ot Jo P (z,y) ) o™ (4)

In the transformations (4), pp and gy represent an approximate known value of
the density and the coefficient of dynamic viscosity, while p,(x) and g, (z) are their
the given known values at the inner edge of the boundary layer.

By means of the newly introduced variables, the equation (3) is brought to:

d

du PVl T,
o QA** eA* _ Pwwlle w
ds (ue ) e pods/dx * pods/dx’ (5)

where the conditional displacement thickness A*, the conditional momentum loss
thickness A*™*, tangential stress at the wall of the body within fluid 7,, and non-

dimensional function of the friction ¢ are determined as:
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B @ _ Puwly Ue s) = M
Tw = (“ay>yzo Po A=t ) la(Z/A**)Lﬂ)'

After a little simpler transformations, the equation (5) can be brought to:

d (A 2 ul A A* 2 wlh oV A
< PBS (5 o) = Putto - P .
ds \ 1 Ue Vo A** ueds/dx \ popio Polo
where “’ 7 stands for the derivation with respect to the longitudinal variable s, while
Vo = Ho/ po-

Introducing the common symbols and the parameter of the form f:

A 2 A
Z** — — IA** — lz** — . — H 8
Y ) f Ue Lo Ue f17 A F ) ( )

the equation (7) reduces to it is final form

Az Fy,

- (9)

ds Ue

It represents the momentum equation of the dissociated gas and it has the same form
as the momentum equation of incompressible fluid. The characteristic function Fy, of
the dissociated gas in the case of a porous contour, in the equation (9), is determined
with the expression:

wA**
yollou=

Fiyp =200 — 2+ H)f] +250 2

(10)

It is noticed that the function Fy,, compared to the corresponding function in the
case of a non-porous contour [3|, contains an additional term. The given velocity
v, figures in this term, and it depends on the porosity of the contour of the body
within fluid. Because of this a new parameter has been introduced in this paper — the
porosity parameter. It is characterized by injection (or ejection) of the dissociated

gas into the boundary layer, and it is determined with the expression:
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A** A**
A(s) = Lot _ Vo

= A17 Vw - ﬂ
Haw Vo 1) My
where V,, is the conditional velocity of injection.

V (11)

In this way, the function Fy, comes down to:

Fyp =

2[C — (2+ H)f] — 2A.

(12)
In this form it will be used in our further studies of the dissociated gas boundary
layer.

3. INTRODUCTION OF A SET OF POROSITY PARAMETERS

The obtained momentum equation (9) can be written in jet another form. If the
value Z** is expressed by means of the parameter of the form (8) Z** = f/ul, and

if the differentiation with respect to s is performed, the momentum equation will be
obtained in the following form:

df u u”
= ‘e, 4 ¢ 13
ds Uy dp ué f ( )
which is more convenient for application of the general similarity method.

Because of the relation (8) between the value Z** and the conditional thickness
A** the porosity parameter (11) can be also written as:

Vi 1/2
AN=——""7"""=A
\/ Vo !
where it follows that:

(14)
% A2V0
7% = vz
Based on this relation, from the momentum equation (9) we obtain
d\  dAy !

ds

Uu 1 V, 3/2

— = —Fp Ny —u,—22" )

ds  u.fi <2 dpfi T U N )

If the second addend in brackets is declared to be a new parameter A

!
A2 = —Ue w

N

x#3/2
7,

(15)
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the previous equation takes this form:

Ue dAl 1 .
uf,@flgzi a1+ Ao =Xy (16)

Differentiating the parameter Ay with respect to the variable s, we will obtain:

Ue . dA 3
Jﬁdi;: (f1+2 dp> Ao+ As = x2, (17)
where the value
V” 5/2
Az = —u2—2L 7" (18)

N

is taken as the third porosity parameter.
If the parameter A3 is also differentiated with respect to the longitudinal variable
s, we will get the equation:

dA;

5)
% = (2f1 + 2de> A3 + A4 = X3, (19)

Ue f
1
/
U,
where
"

Ay =— 3—“’2**7/2. 2
4 ue\/V_o (0)

Continuing the shown procedure, with the next parameters and based on (14), (15),
(18) and (20), it is easily concluded that the general porosity parameter Ag(s) is de-

termined with the next expression

k—1 V’w = xR —1/2

As the analysis indicates, any porosity parameter satisfies the recurrent equation

LR - DA R DR M A = (22

U

whose right hand-side is marked with xx (k= 1,2,3,...) in order to make it shorter.
Finally, we must point out the necessity to introduce the set of porosity parameters
(21) in order to apply the general similarity method by means of which the starting
system of equations (1) of the ideally dissociated gas flow in the case of a porous
contour of the body within fluid, is brought to a general form. This set of parameters

of Loitsianskii’s type, plays the role of new independent variables.
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It is particulary important that the set of parameter Ay, obtained (defined) in this
paper has the identical form as the corresponding set of parameters A\ in the case of
incompressible fluid flow [1], [2]. The corresponding expressions for the characteristic
function Fy, and x; are also identical. Of course, here the porosity parameters are
expressed by means of the newly introduced variable s instead of the physical variable
x, which is the case with incompressible fluid flow. Further more, in the conditions
of incompressible fluid flow (p, i = const.), the newly introduced variables (4) come
down to s(z) — z; z(z,y) — y, where the porosity parameter comes down to A; — Ay
because in that case the conditional velocity of injection is V,, — v,,.

These facts prove the correctness of defining sets of porosity parameters of the
ideally dissociated gas in the form of the expressions (21). That is why in our further
studies of dissociated gas flow in the case of a porous contour of the body within

fluid, we shall use a set of porosity parameters in the form of the expression (21).
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